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We derive an exact formula to calculate the absorption strength in absorbing chaotic systems such as
microwave cavities or acoustic resonators. The formula allows us to estimate the absorption strength as a
function of the averaged reflection coefficient and the real coupling parameter. We also define the weak and
strong absorption regimes in terms of the coupling parameter and the absorption strength.
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I. INTRODUCTION

There is increasing attention to wave systems such as
cavities with internal losses or absorption, whose ray dynam-
ics is fully chaotic �1�. Although in some experimental cases
the absorption in these systems is small �2–4�, in many cases
the losses are unavoidable �5,6�. The losses should be taken
into account in models of microwave cavities at room tem-
perature �2,7–9�, in microwave networks �10,11�, in elastic
and acoustic systems �9,12–18�, in optical systems �19,20�,
and in other applications �16,21�. Furthermore, the effect of
losses on chaotic cavities has originated many theoretical
models �22–34� �for a recent review see �1�� and experimen-
tal works �1,5,6,9,10,24,35–44�.

One important question in real absorbing systems is re-
lated to the quantification of the losses suffered in a given
experimental situation. In some experiments the absorption
strength � can partially be controlled by introducing addi-
tional antennas �38� or by including absorbing materials in-
side the system �6,24�. However, � cannot be controlled in
most experimental cases.

The absorption strength is usually estimated from experi-
mental data with no theoretical basis �6,24,35�. For example,
in the setup of Refs. �6,24� �a single-mode port microwave
resonator�, the value of � in the theory was fitted to repro-
duce the experimental value of the average of the reflection
coefficient. This average is a monotonically decreasing func-
tion of �. A similar procedure was used in Ref. �35� but with
the transmission coefficient T in a two-channel case. In that
case, � was chosen to be the value for which the theoretical
distribution of T fits the experimental data. The value of �
can also be estimated by the Fourier transform of the auto-
correlation function �44�.

In current experiments, the coupling between the wave-
guide �antenna� and the cavity is not perfect. This gives rise
to direct reflections of the wave just before it enters the cav-
ity. This circumstance makes difficult the calculation of the
absorption strength �. A precise procedure to determine �
when the coupling is imperfect would be useful.

Here we present a semianalytical formula to calculate �
which takes into account the coupling for the one-channel
case. This formula is helpful in experiments with microwave

networks and one-port cavities. In Sec. II we summarize the
existing theory used to describe the one-channel-scattering
process through chaotic cavities with losses that take into
account imperfect coupling. In the same section some known
results, valid when time reversal invariance �TRI� is present,
are extended to the case when TRI is absent. Our main result
is obtained in Sec. III where we calculate the average of the
reflection coefficient in terms of � and the coupling intensity
Ta. This relation is inverted numerically to obtain � in terms
of the averaged reflection coefficient. We present our conclu-
sions in Sec. IV.

II. THE S̃ MATRIX AND ITS DISTRIBUTION

The scattering of waves in a cavity with losses perfectly
coupled to the exterior by a single-channel waveguide can be

described by a 1�1 scattering matrix S̃0 �see Fig. 1�a��. Due

to the presence of losses, the matrix S̃0 is subunitary:

S̃0S̃0
† � 1, �2.1�

but this matrix can be parametrized as

S0
~

S
S0

S̃

S̃0

S̃0

(a)

(b)

FIG. 1. Sketch of a flat chaotic cavity. In �a� S̃0 describes the
scattering of the cavity with perfect coupling of the antenna repre-

sented as a flat waveguide. In �b� S̃ describes the scattering through
the system cavity plus a barrier that models imperfect coupling.

PHYSICAL REVIEW E 78, 036208 �2008�

1539-3755/2008/78�3�/036208�7� ©2008 The American Physical Society036208-1

http://dx.doi.org/10.1103/PhysRevE.78.036208


S̃0 = �R0ei�0, �2.2�

where R0 is the reflection coefficient and the phase �0 is
twice the phase shift �except for an additive constant�.

When the classical dynamics of the cavity is chaotic, S̃0
can be modeled by a random matrix whose elements are
chosen following a certain probability distribution. The prob-

ability distribution of S̃0 is assumed to be

dP0
����S̃0� = p0

����R0�dR0
d�0

2�
, �2.3�

where �=1 denotes the presence of time reversal symmetry
and �=2 denotes the absence of the same symmetry �24,29�.
Note that �0 is uniformly distributed between 0 and 2�,
while R0 is distributed according to p0

����R0�. For �=1 we
know that �34�

p0
�1��R0� =

2

�1 − R0�2 P0
�1��1 + R0

1 − R0
� , �2.4�

where P0
�1��x�, with x= �1+R0� / �1−R0� which allows us to

calculate the integrated probability distribution

W1�x� = �
x

�

dx�P0
�1��x�� . �2.5�

We note that W1�x� is a positive monotonically decaying
function, which is explicitly given by �34�

W1�x� =
x + 1

4�
�f1�w�g2�w� + f2�w�g1�w� + h1�w�j2�w�

+ h2�w�j1�w��w=�x−1�/2, �2.6�

with

fq�w� = �
lq

uq

dt
�t	t − w	e−�t/2

�1 + t�3/2 �1 − e−� + t−1� ,

gq�w� = �
lq

uq

dt
1

�t	t − w	
e−�t/2

�1 + t�3/2 ,

hq�w� = �
lq

uq

dt
�	t − w	e−�t/2

�t�1 + t�
�� + �1 − e−����t − 2�� ,

jq�w� = �
lq

uq

dt
1

�t	t − w	
e−�t/2

�1 + t
. �2.7�

Here q=1,2, l1=w, l2=0, u1=�, and u2=w. Several attempts
to interpolate p0

�1��R0� between the two well-known limits of
strong ��→�� and weak ��→0� absorption have been re-
ported �28,29,34�.

The following equations for p0
����R0� extend to �=2 the

results of Eqs. �2.4�–�2.6�. We can see that

p0
����R0� =

2

�1 − R0�2 P0
����1 + R0

1 − R0
� , �2.8�

where P0
�2��x� is related to W2�x� as in Eq. �2.5� and

W2�x� =
1

2
e−�x/2�e�/2�x + 1� − e−�/2�x − 1�� . �2.9�

From Eq. �2.8� we obtain the well-known result for �=2
�33�,

p0
�2��R0� =

e−�/�1−R0�

�1 − R0�3 ���e� − 1� + �1 + � − e���1 − R0�� .

�2.10�

We focus now on the scattering system when both losses
and imperfect coupling are present. The imperfect coupling
can be modeled theoretically by adding a barrier in the wave-
guide at the entrance of the cavity �see Fig. 1�b��. The scat-
tering matrix that describes the cavity in this case will be

denoted by S̃ and, as before, it can be parametrized in terms
of the reflection coefficient R and its phase � as

S̃ = �Rei�. �2.11�

This new matrix is connected with S̃0 by means of the trans-
formation �24�

S̃�S̃0� = − �1 − Ta + �Ta
1

1 − S̃0
�1 − Ta

S̃0
�Ta, �2.12�

where Ta represents the imperfect coupling between the an-

tenna and the cavity. For perfect coupling Ta=1 and then S̃

becomes equal to S̃0. For no coupling we have S̃=−1 for
Ta=0. The two terms on the right-hand side of the last trans-

formation are the fixed and fluctuating parts of S̃. The first
one represents the reflection due to the imperfect coupling at
the entrance to the cavity, while the second is the contribu-

tion to S̃ of the multiple scattering in the cavity. Therefore,
Eq. �2.12� also can be written as

S̃ = 
S̃� + S̃fluc, �2.13�

where 
S̃�=−�1−Ta is the average of S̃. In general 
S̃�,
known as the optical scattering matrix, is a measure of the
prompt responses in the system �imperfect coupling� due to
direct processes. In our case an imperfect coupling gives rise
to direct reflections. The coupling between the antenna and
the cavity can be quantified by �5�

Ta = 1 − 	
S̃�	2, �2.14�

which can be obtained from the experimental data since 
S̃�
is the average over different realizations �or frequencies� of

the measured S̃, including phases. The probability distribu-

tion of S̃ is given by �24�

dP
S̃�
����S̃� = p
S̃�

����S̃�dR
d�

2�
, �2.15�

where
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p
S̃�
����S̃� = � 1 − 
S̃�2

	1 − S̃
S̃�	2
�2

p0
����R0�S̃�� . �2.16�

Here p0
����R0�S̃�� is given by Eq. �2.4�. Note that for perfect

coupling �
S̃�=0 or Ta=1�, S̃ reduces to S̃0 and p
S̃�
����S̃� be-

comes in p0
����S̃0�. The quadratic term in the large parenthe-

ses in Eq. �2.16� is the Jacobian of the transformation �see
Eq. �2.12��; this result was recently generalized to the case of
N channels �30�.

In the next section we use the formalism presented here in
order to calculate the average 
R�� as a function of the ab-
sorption strength � and the antenna coupling Ta. This rela-
tion can be inverted �at least numerically� to give � as a
function of 
R�� and Ta.

III. THE ABSORPTION STRENGTH � AS A FUNCTION
OF ŠR‹� AND Ta

The average 
R�� can be calculated using directly Eq.
�2.15�. However, it is necessary to write R0 as a function of R
and � �see Eq. �2.16��, substituting the resulting expression
in the corresponding distribution p0

����R0� above; then 
R��

should be integrated with respect to R and �. But instead of
doing this long processes, we prefer to calculate 
R�� using
Eq. �2.3� as


R�� = �
0

2� d�0

2�
�

0

1

dR0R�R0,�0�p0
����R0� , �3.1�

where we need to write R as a function of R0 and �0. Using

Eq. �2.12� and 
S̃�=−�1−Ta �the phase in the single-mode
case is not needed� we arrive at

R =
R0 + �1 − Ta� − 2�1 − Ta

�R0 cos �0

1 + �1 − Ta�R0 − 2�1 − Ta
�R0 cos �0

. �3.2�

Substituting this expression for R into Eq. �3.1� and integrat-
ing with respect to �0, we get


R�� = 1 − Ta�
0

1 1 − R0

1 − �1 − Ta�R0
p0

����R0�dR0, �3.3�

where we have used that p0
����R0� is normalized to unity. The

dependence of 
R�� on � comes through p0
����R0� as can be

seen in Eqs. �2.4�–�2.7� and �2.10�. This equation is our main
result, providing an exact expression for the average of R as
a function of � and Ta. This expression could be useful for
experimentalists. However, we show below that Eq. �3.3� can
be written in two more practical forms �see Eqs. �3.4� and
�3.5� below�, especially for the case �=1.

Let us check the two limits: the no-coupling and the per-
fect coupling limits. For Ta=0, 
R��=1, which is compatible
with the argument that the waveguide is blocked, the wave
never enters the cavity, and hence there are no losses. At the
opposite limit, Ta=1 leads to 
R��= 
R0��, which is expected

again because the coupling is perfect and such that S̃= S̃0.
When 0�Ta�1, the integral in Eq. �3.3� can be done

numerically. For �=2 we directly substitute Eq. �2.10� into

Eq. �3.3� and integrate numerically with respect to R0. The
calculation for �=1 is more complicated. However, a sim-
pler formula for 
R�� can be obtained by integrating Eq. �3.3�
by parts, to get �see Appendix A�


R�� = 1 − Ta + 2Ta
2�

1

� W��x�
�x + 1 − �1 − Ta��x − 1��2dx .

�3.4�

The remaining integrations can be done numerically. The
advantage of this equation compared with Eq. �3.3� is that it
is numerically more stable, especially for �=1.

In Fig. 2 we show the numerical results of the last equa-
tion for �=1 and 2. This is done for several values of Ta.
Instead of giving 
R�� as a function of �, we plot � as a
function of 
R��, which could be more useful to experimen-
talists. We observe that 
R�� decays with � for Ta fixed or
with Ta for � fixed. This means that the coupling has an
effect on the averaged reflection coefficient similar to that of
the losses. In this sense we say that the coupling mimics the
absorption, and vice versa �6�. This can be clarified by writ-
ing the argument of the integral of Eq. �3.3� in powers of
�1−Ta�R0 and performing the integral term by term. The re-
sult is an exact useful expression for 
R��, namely,


R�� = 1 − Ta + Ta
2�

n=1

�

�1 − Ta��n−1�
R0
n��, �3.5�

where


R0
n�� = �

0

1

R0
np0

����R0�dR0. �3.6�

The first two terms �1−Ta� in Eq. �3.5� give the direct reflec-
tion due to the coupling at the entrance to the cavity, while
the remaining terms are due to reflections after the multiple
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FIG. 2. The average of the reflection coefficient 
R�� is a mono-
tonically decreasing function of the absorption strength �. We show
� as a function of 
R�� for several values of the coupling Ta: from
left to right Ta=1.0,0.8,0.6,0.4,0.2. Continuous lines correspond
to �=1 and dashed lines to �=2. To a given value of 
R�� corre-
sponds an infinite number of � values, and vice versa.
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scattering. The quantity Ta
2 comes from the probability of the

transmission to cross the barrier twice �entering and leaving
the cavity�. The sum represents the multiple reflections be-
tween the cavity walls and the barrier. Again, we check the
two limits of no coupling and perfect coupling: Ta=0 implies

R��=1, while 
R��= 
R0�� for Ta=1. We usually obtain both
parameters Ta and � from experimental measurements. These
parameters are needed in the theoretical predictions. Once Ta
is calculated from Eq. �2.14�, � is obtained from 
R��, Eqs.
�3.3� and �3.4�, which is also obtained from experimental
data. Our formula allows us to distinguish which part of the
wave is reflected and which part is lost by absorption.

Equations �3.5� and �3.4� are analogous to the transforma-

tion �2.13� where S̃= 
S̃�+ S̃fluc, but for the averaged reflection
coefficient. A formula is given in Refs. �46,47� for the delay
time in which the prompt and delayed responses are sepa-
rated.

A. Strong absorption regime

In this limit it is usually understood that �	1. Here we
will show that the criterion for strong absorption, when di-
rect reflections are also present, is �	Ta. Notice that the old
criterion is included in the new one since Ta� �0,1�.

The probability density distribution of R0 in this limit re-
duces to �29,33�

p0
����R0� = 
�

e−
�R0/�1−R0�

�1 − R0�2+�/2 , �3.7�

where we have defined 
�=�� /2. Substituting Eq. �3.7� into
Eq. �3.6� we can show that �see Appendix B 1�


R0
n�� 


n!


�
n → 0 as 
� → � . �3.8�

This result is consistent with the result 
R0��=1 /
� of Ref.
�22�. Then Eq. �3.5� gives


R�� 
 1 − Ta. �3.9�

This means that, once the wave enters a cavity with strong
absorption, it never gets back since the only reflection hap-
pens at the entrance of the cavity �barrier�.

In Fig. 3 we compare the exact result of Eq. �3.4� with the
strong absorption regime of Eq. �3.9�, which corresponds to
a horizontal line. This is done for two different values of Ta.
As can be seen in this figure, the exact solution for Ta=0.2 is
close to the asymptotic behavior 1−Ta when �
4. This is in
contradiction with the criterion �	1. In this case we can see
that a criterion for strong absorption is �	Ta.

B. Weak absorption regime

The weak absorption regime is usually defined by ��1.
Here we will show that a generalized criterion for weak ab-
sorption, when direct reflections are present, is ��Ta. No-
tice that now the old criterion is satisfied when the general-
ized criterion is valid since Ta�1.

In the weak absorption regime �33�

p0
����R0� =


�
1+�/2


�1 + �/2�
e−
�/�1−R0�

�1 − R0�2+�/2 , �3.10�

where 
�x� is the Gamma function �45�. Substituting this
result into Eq. �3.6�, we get �see Appendix B 2�


R0
n�� 
 1 −

2n

�

� = 1 − n� . �3.11�

Inserting this result in Eq. �3.5�, we obtain


R�� 
 �1 − Ta� +
Ta

2

1 − Ta
�
n=1

�

�1 − Ta�n − �Ta
2�

n=1

�

n�1 − Ta�n−1,

�3.12�

which can be written as


R�� 
 1 − Ta −
Ta

2

1 − Ta
+

Ta
2

1 − Ta
�
n=0

�

�1 − Ta�n

− �Ta
2�

n=1

�

n�1 − Ta�n−1. �3.13�

The fourth term on the right-hand side is just a geometric
series and can be summed. The result is


R�� 
 �1 − Ta� + Ta�1 − �Ta�
n=1

�

n�1 − Ta�n−1� .

�3.14�

Here, we note that the first term �1−Ta� is the reflected part
of the incident wave at the entrance of the cavity and the
second is due to multiple reflections within the cavity. The
sum inside the second term is the derivative with respect to
�1−Ta� of the infinite geometric series whose sum is just
1 /Ta

2. This leads to
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FIG. 3. Averaged reflection coefficient 
R�� as a function of the
absorption strength � for two values of Ta. The continuous and
dashed lines correspond to �=1 and 2, respectively. The dotted
lines yield the strong absorption limit, Eq. �3.9�. The weak absorp-
tion limit, Eq. �3.15�, is given by the dash-dotted line.
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R�� 
 �1 − Ta� + Ta − � = 1 − � . �3.15�

In this limit a small part of the wave that enters into the
cavity is lost by absorption and the rest contributes to the
reflection. Therefore, the reflection coefficient 
R�� is
slightly less than unity; it contains a reflected part due to the
coupling parameter and a part that is not lost by absorption.
Notice that the first term coming from the multiple scatter-
ing, Ta, cancels the −Ta that comes from the direct reflection.
Therefore Ta does not appear explicitly in the final expres-
sion for 
R��, to first order in �.

In Fig. 3 we compare also the average of R in the weak
absorption limit with the exact result of Eq. �3.4� as a func-
tion of the absorption strength � for two values of Ta. One
can see in this figure that, in the case of Ta=0.2 and, say,
�=0.1, the asymptotic behavior is not reached. This is in
contradiction with the criterion ��1. In this case the appro-
priate criterion is ��Ta.

Equations �3.9� and �3.15� represent the average of R in
the two limits of strong and weak absorption, respectively.
Notice that they are independent of the symmetry �. Let us
emphasize that our criterion for strong or weak absorption,
when the coupling is not perfect, becomes �	Ta or ��Ta.
This agrees with �	1 or ��1, respectively, for strong or
weak absorption with perfect coupling.

IV. CONCLUSIONS

We have presented a semianalytical formula to calculate
the absorption strength � due to losses in a chaotic cavity
which takes into account the imperfect coupling of the
single-channel port. This formula could be useful for experi-
ments with microwave networks and one-port cavities where
an accurate value of � is needed. We have shown that the
real imperfect coupling and the absorption have a similar
effect on the scattering properties. Also, a precise definition
of the strong and weak absorption regimes when imperfect
coupling is present was introduced.
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APPENDIX A: CALCULATION OF EQ. (3.4)

We start with the substitution of p0
����R0� of Eq. �2.8� into

Eq. �3.3�. With an appropriate change of variables
x= �1+R0� / �1−R0�, the result can be written as


R�� = 1 − 2TaI�, �A1�

where

I� = �
1

�

A�x�P0
����x�dx , �A2�

with P0
����x� giving rise to W��x� as in Eq. �2.5� and

A�x� =
1

x + 1 − �1 − Ta��x − 1�
. �A3�

We integrate by parts, identifying

u = A�x�, du =
dA�x�

dx
dx , �A4�

v = − W��x�, dv = P0
����x�dx . �A5�

The result of the integration is

I� = − 	A�x�W��x�	x=1
� + �

1

�

W��x�
dA�x�

dx
dx . �A6�

For �=2, Eqs. �2.9� and �A3� give

	A�x�W2�x�	x=1
� =

1

2
. �A7�

We show below that the same result is valid for �=1.
First, we evaluate A�x�W1�x� at x=� or w=�, using Eqs.

�2.6� and �A3�. For instance, we consider the term
f1�w�g2�w� appearing in Eq. �2.6�. Defining y= t /w, we can
write

	f1�w�g2�w�	w=� = �1 − e−�� lim
w→�

�
1

�� y�y − 1�
�1 + wy�3we−�wy/2dy

� �
0

1 we−�wy/2dy
�y�1 − y��1 + wy�3

+ lim
w→�

�
1

�� y − 1

y�1 + wy�3we−�wy/2dy

� �
0

1 e−�wy/2

�y�1 − y��1 + wy�3
dy . �A8�

Here, we can use a definition of the Dirac � function,
namely,

lim
w→�

we−�wy/2 =
2

�
��y� . �A9�

The interval of integration in Eq. �A8� does not include the
argument of ��y�. As a consequence 	f1�w�g2�w�	w=�=0. In a
similar way it can be shown that the remaining terms in Eq.
�2.6� give zero when evaluated at w=�. Then,

	A�x�W1�x�	x=� = 0. �A10�

We now consider the evaluation of A�x�W1�x� at x=1 or
w=0. From Eqs. �2.7� we see that the first term in W1�x�
gives

	f1�w�g2�w�	w=0 = lim
w→0

�
0

1 e−�wy/2

�y�1 − y��1 + wy�3
dy

� �
w

�� t�t − w�
�1 + t�3 e−�t/2�1 − e−� +

1

t
�dt ,

�A11�

which reduces to

ABSORPTION STRENGTH IN ABSORBING CHAOTIC CAVITIES PHYSICAL REVIEW E 78, 036208 �2008�

036208-5



	f1�w�g2�w�	w=0 = ��
0

� te−�t/2

�1 + t�3/2�1 − e−� +
1

t
�dt .

�A12�

Similarly, the third term in W1�x� gives

	h1�w�j2�w�	w=0 = ��
0

� e−�t/2

�1 + t
�� + �1 − e−����t − 2��dt ,

�A13�

while the second and the fourth terms in W1�x� are zero when
evaluated at x=1. Let us consider the second term only:

	f2�w�g1�w�	w=0 = lim
w→0

�
0

1� y�1 − y�
�1 + wy�3w2

�e−�wy/2�1 − e−� +
1

wy
�dy

� �
w

� e−�t/2

�t�t − w��1 + t�3
dt , �A14�

which gives zero.
From Eqs. �A12�, �A13�, and �A3� we get

	A�x�W1�x�	x=1 =
1

4
�1 − e−���

0

� te−�t/2

�1 + t�3/2 + �
0

� e−�t/2

�1 + t�3/2

+ �� − 2 + 2e−���
0

� e−�t/2

�1 + t�1/2

+ ��1 − e−���
0

� te−�t/2

�1 + t�1/2 . �A15�

Integrating by parts, we can establish the following relations:

�
0

� e−�t/2

�1 + t�1/2dt =
2

�
−

1

�
�

0

� e−�t/2

�1 + t�3/2dt , �A16�

�
0

� te−�t/2

�1 + t�1/2dt = � 2

�
�2

−
1

�
�

0

� te−�t/2

�1 + t�3/2dt

−
2

�2�
0

� e−�t/2

�1 + t�3/2dt . �A17�

Substituting Eqs. �A16� and �A17� into Eq. �A15� we obtain

	A�x�W1�x�	x=1 =
1

2
. �A18�

Therefore, using Eqs. �A7�, �A10�, and �A18�, Eq. �A6� can
be written as

I� =
1

2
+ �

1

�

W��x�
dA�x�

dx
dx . �A19�

Finally, Eqs. �A1�, �A3�, and �A19� yield Eq. �3.4�.

APPENDIX B: CALCULATION OF ŠR0
n
‹�

1. Strong absorption limit

In this limit, Eq. �3.7� can still be simplified to the Ray-
leigh distribution �22,29�

p0
����R0� = 
�e−
�R0, �B1�

which is substituted into Eq. �3.6� to obtain


R0
n�� = 
��

0

1

R0
ne−
�R0dR0 = − e−
� +

n


�


R0
n−1��, �B2�

where an integration by parts was done. This expression can
be iterated to obtain


R0
n�� =

n!


�
n − e−
� �

m=0

n−1
n!

�n − m�!
�
m . �B3�

The limit 
�→� gives Eq. �3.8�.

2. Weak absorption limit

We substitute Eq. �3.10� into Eq. �3.6� to obtain


R0
n�� =


�
1+�/2


�1 + �/2��0

1

R0
n e−
�/�1−R0�

�1 − R0�2+�/2dR0

=

�

1+�/2


�1 + �/2��1

�

e−
�x�x − 1�nx�/2−ndx , �B4�

where we used the change of variable x= �1−R0�−1. Using
the binomial expansion for �x−1�n we write Eq. �B4� as


R0
n�� =

1


�1 + �/2��r=0

n
�− 
��n−rn!

r!�n − r�!

�1 + �/2 + r − n,
� ,

�B5�

where 
�a ,x� is the incomplete Gamma function �45�. Keep-
ing linear terms in 
�, we arrive at Eq. �3.11�. Special care
for �=2 should be taken since the Gamma functions are
divergent. However, the result of Eq. �3.11� is valid.
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